Abstract
Context: Identifying bacterial components, especially components that are involved in virulence, the first priority is the science of microbiology
Objective: Secretion is an essential duty for prokaryotes to better interact with their surroundings or host. In particular, the production of extracellular proteins and peptides is important in many aspects of survival and organism adaptation to its ecological niche. Secretion systems are usually classified into 7 groups: Type I, II, III, IV, V, VI, VI and chaperons navigating the pathways are also a part of the system [1, 2]. In Gram-negative bacteria, 6 secretion systems are known and named as Type I to Type VI. Each system has its own different components, compounds and the mechanisms [3]. Gram-positive bacteria are common by Gram-negative bacteria in some secretion systems and pathways; although, most of them benefit from Sec and Tat secretion pathways to discharge materials through the single- layer membrane width [4, 5].
Systems I, III, IV, VI are single-stage pathways. This means that the materials they carry are discharged into the extracellular space directly and without any periplasmic intermediate [1,3].
In two-stage systems such as II and V, proteins with the help of a general secretion systems such as Tat and Sec enter into periplasma space to find the right folding, and then in the second step, protein finds the way out by one of the two-stage secretion systems [6].
Implication for healthy: This paper examined the secretory system in pathogenic and non bacteria, And their role in the expression of virulence factors.
References
Tseng TT, Tyler BM and Setubal CJ. Protein secretion systems in bacterial-host associations, and their description in the gene onthology. BMC Microbiology. 2009;XXX: 1-9. doi:10.1186/1471-2180-9-S1-S2.
Kanonenberg K, Schwarz C and Schmitt L. Type I secretion system- a story of appendices. Research in Microbiology. 2013; 164: 596-604.
Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV,Pugsley AP. Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol. 2006; 62: 308- 319.
Lloubes R, Bernadac A, Houot L, Pommier S. Non classical secretion systems. Research in Microbiology. 2013; 164: 655-663.
Natale P, BrÜSer T, Driessen A. Sec and Tat mediated protein secretion across the bacterial cytoplasmic membrane- distinct- translocases and mechanisms. Biochimica et Biophysica Acta. 2008; 1778: 1735- 1756.
Pallen M, Chaudhuri R and Henderson I. Genomic analysis of secretion systems. Current Opinion in Microbiology. 2003; 6(5): 519-527.
Wille T, Wagner C, Mittelstadt W, Blank K, Sommer E, Malengo G, Duhler D, et al. SiiA and SiiB are novel type I secretion system sub unite controlling SP-14 mediated adhesion of Salmonella enteric. Cellular Microbiology. 2014; 16(2): 161–178.
Bleves S, Viarre V, Salacha R, Michel GP, Filloux A, Voulhoux R. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol. 2010; 300: 534-543.
Delepelaire P.Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta. 2004; 1694(1-3): 149-161.
Holland IB, Schmitt L, Young J: Type 1 protein secretion in bacteria, the ABC- transporter dependent pathway(review). Molecular Membrane Biology. 2005, 22(1–2):29-39.
Harley KT, Djordjevic GM, Tseng TT and Saier MH. Membrane fusion protein homologues in gram positive bacteria. Mol Microbiol. 2000;,36(2):516-517.
Binet R and Wandersman C. Cloning of the Serratia marcescens hasF gene encoding the Has ABC exporter outer membrane component: a TolC analogue. Mol Microbiol. 1996; 22: 265-273.
Koronakis V, Sharff A, Koronakis E, Luisi B and Hughes
C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export . Nature. 2000; 405: 914-919.
Gilson L, Mahanty HK, Kolter R. Four plasmid genes are required for colicin V synthesis, export, and immunity. J. Bacteriol. 1987; 169: 2466-2470.
Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug- binding pocket. Nature. 2011; 480: 565-569.
Brandon L D, Goehring A, Janakiraman AW, Yan T, Wu J, Beckwith MB. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion although the Sec apparatus is circumferentially distributed. Mol Microbiol. 2003; 50:45-60.
Dalbey R and Kuhn A. Protein Traffic in Gram- negative bacteria-how export and secretion proteins find their way. FEMS Microbiol Rev. 2012;36: 1023–1045.
Desvaux M, Parham N J, Scott-Tucker A and Henderson I R.The general secretary pathway: a general misnomer. Trends in Microbiology. 2004; 12(7): 306- 309.
Mole B M, Baltrus D A, Dangl J L and Grant S R. Global regulation networks in pathogenic bacteria. Trends Microbiol. 2007, doi:10.1016/j.tim.2007.06.005.
Cianciotto N P. Type II secretion: a protein system system for all seasons. Trends in Microbiology. 2005; 13(12): 581-588.
Voulhoux, R. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J. 2001; 20: 6735–6741.]
Henderson I R, Navaro-Garcia F, Desvaux M and Fernandez R C. Type V protein secretion pathway: the autotransporter story. Microbiol And Molecul Biolo Revi. 2004; 68(4): 692–744.
Sandkvist M. Biology of type II secretion. Mol. Microbio. 2001; 40: 271-283.
Sandkvist M. Type II secretion and pathogenesis. Infect Immun. 2001;69: 3523–3535.
Soderberg MA. The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol. 2004; 186: 3712–3720.
Koebnik R, Locher KP, and P Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000; 37:239– 253.
Cornelis GR.The type III secretion injectisome.Nat Rev Microbiol. 2006;4(11): 823-825.
Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol. 2006, 60:425-449.
Tang X, Xiao Y and Zhou J M. Regulation of the type III secretion system in pathogenic bacteria. MPMI. 2006; 19(11): 1159–1166. DOI: 10.1094/ MPMI -19-1159.
Mota LJ, Cornelis GR. The bacterial injectisom kit: type III secretion system. Annals of Medicine. 2005; 37(4):234-249.
Desvaux M, Hebraud M, Talon R and Henderson I R. Secretion and subcellular localization of bacterial proteins: a semantic awareness issue. Trends in Microbiology, 2009; 17(4): 139-145.
Silverman J M, Brunet R Y, Cascales E and Mogous J D. Structure and Regulation of the Type VI Secretion System. Annu Rev Microbiol. 2012 ; 66: 453–472. doi:10.1146 annurev-micro-121809-151619.
Fischer W, Haas R and Odenbreit S. Type IV secretion systems in pathogenic bacteria.
Int J Med Microbiol. 2002; 292: 159-168.
Culthurst S J. The type VI secretion system- a widespread and versatile cell targeting system.Research in Microbiology. 2013; 164: 640-654.
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Hemophilus. Microbiological Research. 2015; 170: 10-17.
Christie PJ, Whitaker N, Gonzales-Rivera C.The mechanism and structure of the bacterial type IV seceretion system. Biochim BiophysActa. 2014; 1843(8):1578-1591.
Leo J C, Grin I and Link D. Type V secretion: mechanism(s) of autotransport through the bacterial outer memberan. Phil Trans R Soc B. 2012; 367: 1088- 1101.
Bhatty M, Laverdy Gomez JA,Christia PJ.The expending bacterial type VI secretion lexicon.Res Microbiol. 2013;164(6):620-639.
Bingle L, Bailey C M and Pallen M J. Type VI secretion: a beginner’s guide. Current Opinion in Microbiology. 2008; 11:3–8.
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics. 2009; 10:104.
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino
D. Identification of a conserved bacterial protein secretion system in Vibrio cholera using the Dictyostelium host model system. Proc Natl Acad Sci U.S.A. 2006; 103: 1528e1533.
Ma AT, McAuley S, Pukatzki S, Mekalanos JJ. Translocation of a Vibrio cholera type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 2009; 5: 234-243.
Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad
R. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010; 725-737.
Houben E, Bestebroer J, Ummels R, Wilson L, Piersma S, Jiménez C, et al. Composition of Type VII secretion system memberan complex. Molecular Microbiology. 2012; 86(2): 472–484.
Luirink,J, Vandenbroucke-Grauls CM. Type VII secretion—mycobacteria show the way. Nat Rev Microbiol. 2007; 5: 883–891.
Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius N, Mahasha PW, Jimenez C. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol. 2008; 73: 329–340
Weerdenburg EM, Abdallah AM, Mitra S, de Punder K. ESX-5 dificient in Mycobacterium marinum is hypervirulent in adult zebrafish. Cell Microbiol. 2012; 14: 728–739.
Binet R, Lettofe S, Ghigo JM, Delepelaire P and Wandersman C. Protein secretion by Gram-negative bacterial ABC exporters – a review. Gene. 1997; 192 :7–11.
Terpe K. Overview of bacterial expression systems for heterologus protein production:from molecular and biochemical fundamental to commercial system. App Microbiol Biotechnol. 2006; 72: 211-222.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyright (c) 2020 Array