Peer Review, UGC Care
Synthesis and biological activity of some novel Combretastatin analogues and related compounds
PDF

Keywords

Combretastatin A-4, antiangiogenic, cytotoxicity, anticancer, antitubulin

How to Cite

Kumar, S. ., Chandrul, K. K. ., & Jain, S. . (2017). Synthesis and biological activity of some novel Combretastatin analogues and related compounds. International Journal of Research and Development in Pharmacy & Life Sciences, 6(4), 2720 - 2725. https://doi.org/10.21276/IJRDPL.2278-0238.2017.6(4).2720-2725

Abstract

CA-4 is a biologically very active compound by binding to the colchicine binding site which lead to the inhibition of microtubule polymerization as well as showing antiagiogenic and anticancer effects by selectively shutting down the tumor blood flow. To avoid the disadvantage of rather low in vivo efficiacy resulting from the isomerization of the cisstilbene derivative to the thermodynamically more stable trans-isomer, our research group started the project for CA-4 analogs synthesis. The incorporation of carbocycles with different ring sizes on the connecting carbon-bridge of the natural compound prevents the system to undergo cis-trans-isomerization. The synthesis of the cyclopropane derivative of CA-4 via the cyclopropanation reaction with diazomethane, and further analogs with incorporated moieties for better water solubility.

https://doi.org/10.21276/IJRDPL.2278-0238.2017.6(4).2720-2725
PDF

References

Avendano, C.; Menendez, C. Medicinal Chemistry of Anticancer Drugs; Elsevier, eBook ISBN: 9780444626677. 2008.

Boyle, P.; Levin, B.World cancer report, World Health Organization, ISBN-139789283204237, 2008.

Newman, D. J.; Cragg, G. M.; Snader, K. M. The influence of natural products upon drug discoveryNatural Product Reports 2000;17: 215-234. [View in PubMed]

Pettit, G. R.; Cragg, G. M.; Herald, D. L.; Schmidt, J. M.; Lohavanijaya, P. Canadian ,Antineoplastic Agents 579. Synthesis and Cancer Cell Growth Evaluation of E-Stilstatin 3: A Resveratrol Structural Modificatio. Journal of Chemistry-Revue Canadienne De Chimie1982;60: 1374- 1376.

Pettit, G. R.; Toki, B. E.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Chapuis, J. C., Antineoplastic agents. 410. Asymmetric hydroxylation of trans-combretastatin A-4.Journal of Medicinal Chemistry 1999; 42: 1459-1465.

Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E., B Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. biochemistry, 1989; 28: 6984-6991.

Chaudhary, A.; Pandeya, S. N.; Kumar, P.; Sharma, P.; Gupta, S.; Soni, N.;Verma, K. K.; Bhardwaj, G. Combretastatin a-4 analogs as anticancer agents. Mini-Reviews in Medicinal Chemistry 2007;7: 1186-1205.

Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H. M.; Lin, C. M.; Hamel, E., Synthesis and evaluation of analogues of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)etheneaspotential cytotoxic and antimitotic agents. Journal of Medicinal Chemistry 1992;35: 2293-2306.

Hori, K.; Saito, S.; Kubota, K., A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. British Journal of Cancer 2002;86: 1604-1614.

Salmon, H. W.; Mladinich, C.; Siemann, D. W., Evaluations of vascular disrupting agents CA4P and OXi4503 in renal cell carcinoma (Caki-1) using a silicon based microvascular casting technique. European Journal of Cancer 2006; 42: 3073-3078.

Davis, P. D.; Dougherty, G. J.; Blakey, D. C.; Galbraith, S. M.; Tozer, G. M.; Holder, A. L.; Naylor, M. A.; Nolan, J.; Stratford, M. R. L.; Chaplin, D. J.; Hill, S. A., Distribution of radioactivity and metabolite profiling in tumour and plasma following intravenous administration of a colchicine derivative (14C-ZD6126) to tumour-bearing mice. Cancer Research 2002; 62: 7247-7253.

Fumagalli, M., Rossiello, F.; Clerici, M.; Barozzi, S.; Cittaro, D.; Kaplunov, J. M.; Bucci, G.; Dobreva, M.; Matti, V.; Beausejour, C. M.; Herbig, U.; Longhese, M. P.; di Fagagna, F. D. Nat. Cell. Biol. 2012;14: 355. [View in PubMed]

Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M., Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging. Journal of Natural Products 1987;50: 119-131.

Pettit, G. R.; Singh, S. B., Synthesis and Biological activity Combretastatin A-4 Analogs“. Canadian Journal of Chemistry-Revue Canadienne De Chimie 1998; 67: 2390-2396.

Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F., Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a), Journal of Medicinal Chemistry 1995; 38: 2994-2994. [View in PubMed]

Singh, S. B.; Pettit, G. R., Isolation, structure, and synthesis of combretastatin C-1 Journal of Organic Chemistry 1989; 54: 4105-4114.

Pettit, G. R.; Singh, S. B.; Niven, M. L. Antineoplastic agents. 160. Isolation and structure of combretastatin D-1: a cell growth inhibitory macrocyclic lactone from Combretum caffrum, Journal of the American Chemical Society1988; 110: 8539-8540.

Kovacs, A.; Vasas, A.; Hohmann, J., Natural phenanthrenes and their biological activity. Phytochemistry 2008; 69: 1084-1110.

Graening, T.; Schmalz, H. G., Total syntheses of colchicine in comparison: a journey through 50 years of synthetic organic chemistry. AngewandteChemie-International Edition 2004; 43: 3230-3256.

Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T., Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Medicinal Research Reviews 1998;18: 259-296.

Zhang, S. X.; Feng, J.; Kuo, S. C.; Brossi, A.; Hamel, E.; Tropsha, A.; Li, K. H., Antitumor agents. 199. Three-dimensional quantitative structure-activity relationship study of the colchicine binding site ligands using comparative molecular field analysis.Journal of Medicinal Chemistry 2000; 43: 167-176.

Pinney, K. G.; Pettit, G. R.; Trawick, M. L.; Jelinek, C.; Chaplin, D. J. In Anticancer Agents from Natural Products, 2nd ed.; Cragg, G. M., Kingston, D. G. I., Newman, D. J., Eds.; Taylor and Francis: Boca Raton, FL, 2011.

Andreu, J. M.; Timasheff, S. N., Conformational states of tubulin liganded to colchicine, tropolone methyl ether, and podophyllotoxin. Biochemistry 1982; 21: 6465-6476. [view in PubMed]

Berg, U.; Deinum, J.; Lincoln, P.; Kvassman, J. The Role of Microtubules in Cell Biology, Neurobiology, and Oncology, Bioorganic Chemistry 1991; 19: 53-65.

Gatenby, R. A.; Gillies, R. J, A microenvironmental model of carcinogenesis., Nature Reviews Cancer 2008; 8: 56-61. [View in PubMed]

Lowe, S. W.; Cepero, E.; Evan, G. Breast Cancer: Nuclear Medicine in Diagnosis and Therapeutic Options, Nature 2004; 108, 432: 307-315.

Fidler, I. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. J., Nature Reviews Cancer 2003; 3: 453-458.[View in PubMed]

Zeidm I., Metastasis: a review of recent advances.an, ,Cancer Research 2009; 17: 157-162.

Thiery, J. P., Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer 2002; 2: 442-454. [View in PubMed]

Brabletz, T.; Jung, A.; Spaderna, S.; Hlubek, F.; Kirchner, T., Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer2005; 5: 744-749.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Copyright (c) 2020 Array

Downloads

Download data is not yet available.