Abstract
Present study is aimed to understand the role of structural manipulation in modeling of anti-HIV-1 activity of Piperidine-4-Carboxamide CCR5 antagonists. For the purpose a set of 21 Piperidine-4-Carboxamide has been chosen. Study explores the role of various, structural features like size, substitution and steric properties in anti-HIV-1 activity of Piperidine-4-Carboxamide CCR5 antagonists derivatives. Multiple regression method is adopted to understand the role of structural manipulation in modeling the logIC50 activity. Statistics generated from the study shows that none of the parameter having statistical significant value of r but bi-parametric to tetra-parametric combinations produced the improved regression value.
References
Berger, E. A.; Murphy, P. M.; Farber, J. M. Chemokine Receptors as HIV-1 Coreceptors: Roles in Viral Entry, Tropism, and Disease. Annu. ReV. Immunol. 1999, 17, 657-700.
Fauci, A. S. Host factors and the pathogenesis of HIV-induced disease. Nature 1996, 384, 529-534.
Connor, R. I.; Sheridan, K. E.; Ceradini, D.; Choe, S.; Landau, N. R. Change in Coreceptor Use Correlates with Disease Progression in HIV-1-Infected Individuals. J. Exp. Med. 1997, 185, 621-628.
Cocchi, F.; DeVico, A. L.; Garzino-Demo, A.; Arya, S. K.; Gallo, R. C.; Lusso, P. Identification of RANTES, MIP-1R, and MIP-1â as the Major HIV-Suppressive Factors Produced by CD8 + T Cells. Science 1995, 270, 1811-1815.
Imamura, S.; Nishikawa, Y.; Ichikawa, T.; Hattori, T.; Matsushita, Y.; Hashiguchi, S.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Sugihara, Y. CCR5 antagonists as anti-HIV-1 agents. Part 3: Synthesis and biological evaluation of piperidine-4-carboxamide derivatives. Bioorg. Med. Chem. 2005, 13, 397-416.
Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, 1976.
Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity Analysis; Research Studies Press: Letchworth, U.K., 1986.
Trinajstic ´, N. Chemical Graph Theory, 2nd ed.; CRC Press: Boca Raton, FL, 1992.
Diudea, M. V.; Ivanciuc, O. Molecular Topology; Comprex: Cluj, Romania, 1995.
Balaban, A. T. From Chemical Graphs to 3D Molecular Modeling. In from Chemical Topology to Three-Dimensional Geometry; Balaban, A. T., Ed.; Plenum: New York, 1997; pp 1-24.
Diudea, M. V. Croat. Chem. Acta 1999, 72, 835-851.
Wiener H, J. Am. Chem. Soc., 69, 2636, 1947.
Shinichi Imamura, Takashi Ichikawa, Youichi Nishikawa, Naoyuki Kanzaki, Katsunori Takashima, Shinichi Niwa, Yuji Iizawa, Masanori Baba, and Yoshihiro Sugihara. Journal of Medicinal Chemistry 10.1021/jm051034q, American Chemical Society, Published on Web 04/05/2006.
Chem Sketch: www.acdlabs.com
Molecular modelling Pro: www.labwrench.com
HyperChem: WWW.hyper.com
Chaterjee, S.; Hadi, A.S.; Price, B., Regression Analysis by Examples, 3rd ed. Wiley-VCH: New York, 2000.
How to cite this article:
Tiwari A.K., Agrawal N., Thakur M., Nagendrappa G. and Thakur A. Modelling of Anti-HIV-1 Activity of Piperidine-4-carboxamide CCR5 Antagonist: Role of Structural Manipulation. Int. J. Res. Dev. Pharm. L. Sci. 2018; 7(3): 3006-3010. doi: 10.13040/IJRDPL.2278-0238.7(3).3006-3010
This Journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyright (c) 2020 Array