Abstract
The structural and optical properties of the titanium dioxide nanoparticles (TiO2NPs) have been investigated using (UV-Vis) spectrophotometer and SEM. The produced nanoparticles show small and about sharp round peaks around 220nm. The produced nanoparticles have a spherical shape with an average particle size ˂50 nm. The effect of titanium dioxide NPs was studied on the activity of Alkaline Phosphatase (ALP) in the saliva of 25 patie nts with gingivitis in comparison to 20 healthy subjects with the average age about 22-23 years for both groups. The results correlated with the observation that salivary alkaline phosphatase activity increase in patient with gingivitis in comparison to control group and salivary ALP activity inhibited by titanium dioxide nanoparticles.
References
American Academy of Periodontology: Drug-associated gingival enlargement. Informational paper. J Periodontal (2004); 75:1424-1431
Lindhe J, Karrying T and Lang N: Clinical periodontology & implant dentistry, fifth edition, (2008) Vol. 2, Clinical concepts, Chapter 26: pp. 573- 586.
Catalina P, Camelia S, and Monica B. Growth factors and Connective Tissue Homeostasis in Periodontal Disease . , NurcanBuduneli (Ed), ISBN (2012); 978-953- 307-924-0.
Mariotti A.: Dental plaque induced gingival disease
.Ann. periodontal. (1999); 4(1):7-17.105.
Saini R, Marawar, PP; Shete S et al. Periodontitis a true infection. J Global Infect Dis. (20096); 2:149-50.
Rosalki SB, Mcintyre N. Biochemical investigation in the management of liver disease. Oxford textbook of clinical hepatology, 2nd edition. New York, Oxford University press (1999); p 503-521.
Chapple I, Garner I, Saxby M, Moscrop H, Matthews J. Prediction and diagnosis of attachment loss by enhanced chemiluminescent assay of crevicular fluid ALP levels. Journal Clinical Periodontal. (1999); 26:190-8.
Gao J, Symons AL, Haase H and Bartold PM. Should cementoblasts express ALP activity? Preliminary study of rat cementoblasts in vitro. J Periodontal. (1999); 70(9):951-9.
Shibata Y, Yamashita Y, Miyazaki H, Ueno S, Takehara
T. Effective method of discriminating between oral bacterial and human ALP activity. Oral Microbiol Immunol. (1994) Feb; 9: 35-9.
Yan F. ALP level in gingival crevical fluid of periodontitis before and after periodontal treatment. Chung Hua Kou Chiang Hseueh Tsa China. (1995); 30: 255-266.
Albrecht MA, Evans CW and Raston CL. Green chemistry and the health implications of nanoparticles. J Green Chem. (2006); 8: 417-420.
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. NanomedNanotechnolBiol Med (2007); 3: 95-101.
Bhupendra C, Anjana K, Nidhi A and updhyay RV. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J. Nano pat. Res., 10, Janury. (2010).
Chandra G, Ghosh KS, Dasgupta S and Roy A. Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids. International J. of Biological Macromolecules. (2010); 47(3):361-365.
Allaker RP. The Use of Nanoparticles to Control Oral Biofilm Formation. J Dent Res (2010); 89: 1175-1186.
Giertsen E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res (2004); 38: 430-5
Winkler, Jochen. Titanium Dioxide. Hannover: Vincent Network. (2003); pp, 5.ISBN 3-87870-148-9.
Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. J Acta Odontol Scand 1963;21, 533-551.
Silness J, Loe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. J Acta Odontol Scand 1964; 22, 121-135.
Chen L, Rahme K, Holmes JD, Morris MA and Slater KH.Non-solvolytic synthesis of aqueous solubleTiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation. Nanoscale Research Letters (2012); 7:297.
AL-Rubaee E, Ali A, Salman A, Salman Z. Inhibition Effect of Noble Metals Nanoparticles on Acid Phosphatase Activity in sera of healthy subject. Accepted to publish in Eng. and Technology J. (2014).
AL-Rubaee E. Kinetic study of the effect of gold and silver Nanoparticles on salivary LDH activity. GJSR Journal. (2014); Vol. 2(4), pp. 111-118.
Schug H, Isaacson CW, Sigg L, Ammann AA, Schirmer K. Effect of TiO2NPs and UV radiation on extracellular enzyme activity of intact heterotrophic biofilms. Environ Sci Technol. (2014); 48 (19):11620-8.
Yoshie H, Tai H, Kobayashi T, Oda-Gou E, Nomura Y, Numabe Y. Salivary enzyme levels after Scaling and Interleukin 1 genotypes in Japanese patients with chronic periodontitis. Journal Periodontal (2007); 78:498-503.
Yan F, Cao C, Li X. Alkaline phosphatase level in gingival crevical fluid of periodontitis before and after periodontal treatment. Zhonghua Kou Qiang Yi XueZaZhi (1995); 30:255-66. Back to cite text no. 11 [PUBMED].
Numabe Y, Hisano A, Kamoi K, Yoshie H, Ito K, Kurihara
H. Analysis of saliva for periodontal diagnosis and monitoring. Periodontology (2004); 40: 115-9. 25.
Nakashima K. RoehrichN.CimasiniG.Osteocalcin. - Prostaglandin E2 and alkaline phosphatase in gingival crevicular fluid: their relations to periodontal status. J ClinPeriodontol. (1994); 21(5):327-33.
Kibayashi M, Tanaka M, Nishida N, Kuboniwa M, Kataoka K, Nagata H,et al. Longitudinal study of the association between smoking as a periodontitis risk and salivary biomarkers related to periodontitis. JournalPeriodontol (2007); 78(5):859- 67.
Mojgan P, Afsaneh R. Salivary biochemical markers of periodontitis. Rom J Biochem (2013); 50:129-46.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyright (c) 2020 Array