EVALUATION OF ANTIDIABETIC, ANTIDYSLIPIDEMIC & HEPATOPROTECTIVE ACTIVITY OF HOMALIUM ZEYLANICUM IN ALLOXAN INDUCED DIABETIC RATS

Authors

  • Swathi Pothireddy SRR College of Pharmaceutical Sciences, Valbhapr, Elkathrthy, Karimnagar, A.P., India
  • Saritha Chukka Chaitanya College of pharmacy Education and Research, Kishanpra, Hanamkonda Warangal, A.P., India
  • Puligilla Shankaraiah Chaitanya College of pharmacy Education and Research, Kishanpra, Hanamkonda Warangal, A.P., India

Keywords:

Antidiabetic, antidyslipidemic, hepatoprotective, Homalium zeylanicum, Alloxan monohydrate.

Abstract

To evaluate the antidiabetic activity of Homalium zeylanicum stem bark extracts against Alloxan induced Diabetes mellitus. Materials and methods: Diabetes was induced in male Wistar rats by intraperitoneal injection of Alloxan (90mg/kg). Ethanol extract of Homalium zeylanicum stem bark were administered to the experimental rats (250mg and 500mg/kg, p.o. for 28 days). The antidiabetic & antidyslipidemic, effects of these extracts was evaluated by the assay of biochemical parameters (Blood glucose and lipid profiles, SGOT, SGPT) and histopathological studies of the liver. Results: In Ethanol extract-treated animals, the hyperglycemia by the Alloxan was controlled significantly by restoration of the levels of serum glucose, lipid profile and liver enzymes as compared to the normal and the standard drug Metformin treated groups. Histology of the liver sections of the animals treated with the extracts showed the presence of normal hepatics, absence of necrosis and fatty infiltration, which further evidenced the hepatoprotective activity. Conclusion: Ethanol extract of the stem bark of Homalium zeylanicum possesses significant antidiabetic, antidyslipidemic and hepatoprotective activity.

Downloads

Download data is not yet available.

References

American Diabetes Association. Position statement from the American Diabetes. Association on the diagnosis and classification of diabetes mellitus. Diabetes Care 31 (Suppl. 1), S55-S60 (2008).

American Diabetic Association. Standards of medical care in diabetes-2010. Diabetes Care 33 (Suppl. 1), S11-S61 (2010).

DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North. Am. 88, 787- 835 (2004).

Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393-403 (2002).

DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomized controlled trial. Lancet 368, 1096-1105 (2006).

Fajans, S.S., Bell, G.I., Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity- onset diabetes of the young. N. Engl. J. Med. 345, 971- 980 (2001).

Feldman, E. L. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J. Clin. Invest.111, 431-433 (2003).

Frayling, T.M. Genome-wide association studies provide new insights into type 2 diabetes etiology. Nat. Rev. Genet. 8, 657-662 (2007).

Gavin III, J. R., Alberti, K. G. M. M., Davidson, M. B. et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26 (Suppl. 1), S5-S20 (2003).

Kahn, C.R., Flier, J.S., Bar, R.S., et al. The syndromes of insulin resistance and acanthosis nigricans. N. Engl. J. Med. 294,739-745(1976).

Knip, M. & Siljander, H. Autoimmune mechanisms in type 1 diabetes. Autoimm. Rev.7, 550-557 (2008).

Sheetz, M.J. & King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. J. Am. Med. Assoc. 288, 2579-88 (2002).

Skyler, J., Diabetic complications: the importance of glucose control. Endocrinol. Metab. Clin. North. Am. 25, 243-254 (1996).

Unwin, N., Gan, D. & Whiting, D. The IDF Diabetes Atlas: Providing evidence, raising awareness and promoting action. Diabetes Res.Clin. Pract. 87, 2-3 (2010).

Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet.40, 638-645 (2008).

Trinder, P. Determination of blood glucose using an oxidaseperoxidase system with a non-carcinogenic chemogen. J Clin Pathol 1969; 22:158-161.

Bucolo G., David M. Estimation of Lipid profiles. Clin. Chem.. , 1973; 19:476.

Reitman S, Frankel S. A Colorimetric method for the determination of serum glutamic-oxoloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 1957;28:56-63.

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001; 50: 536-546.

McLennan SV, Heffernan S, Wright L, et al. Change in hepatic glutathione metabolism in diabetes. Diabetes 1991; 40:344-8.

Mira, L., Fernandez M.T., Santos M., Rocha R., Florencio

M.H. and Jennings K.R., Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Res., 2002, 36, 1199-1208.

Anjaneyulu, M. and Chopra K. Qurcetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy In rats. Clin exp pharmacol physiol., 2004, 31:,244-248.

Furusawa, M., Tanaka T., Ito T., Nishikawa A. and Yamazaki N. Antioxidant activity of hydroxyflavonoids. J. Health Sci., 2005, 51, 376-378.

Frode, T.S. and Medeiros Y.S. Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol., 2008, 115, 173-183.

Lean, M.E., Noroozi M., Kell L., Burns J., Talwar D, Sattar

N. and Crozier A. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes., 1999, 48,176-181.

Jung, U.J., Lee M.K., Park Y.B., Kang M.A. and Choia M.S.. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mrna levels in type-2 diabetic mice. Int. J. Biochem. Cell. Biol., 2006, 38, 1134–1145.

Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa a: flavonoid intake and risk of chronic diseases. Am j clin nutr, 2002, 76, 560-568

Santomauro, A.T., Boden G., Silva M.E., Rocha D.M. and Santos R.F. Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes., 1999, 48, 1836–1841.

How to cite your article:

Pothireddy S., Chukka S., Shankaraiah P., “Evaluation of antidiabetic, antidyslipidemic & hepatoprotective activity of Homalium zeylanicum in alloxan induced diabetic rats”, Int. J. Res. Dev. Pharm. L. Sci., 2014, 3(3), pp. 1004-1010.

Published

2014-05-15

How to Cite

Pothireddy, S. ., Chukka, S. ., & Shankaraiah, P. . (2014). EVALUATION OF ANTIDIABETIC, ANTIDYSLIPIDEMIC & HEPATOPROTECTIVE ACTIVITY OF HOMALIUM ZEYLANICUM IN ALLOXAN INDUCED DIABETIC RATS. International Journal of Research and Development in Pharmacy & Life Sciences, 3(3), 1004-1010. Retrieved from https://ijrdpl.com/index.php/ijrdpl/article/view/340