Peer Review, UGC Care
ISOLATION, PURIFICATION AND CHARACTERIZATION OF ALKALI AND THERMO STABLE XYLANASE FROM BACILLUS SP. KS09
View PDF

Keywords

Xylanase, purification, isolation, ammonium sulfate fractionation, Congo red dye.

How to Cite

Mittal, A. ., Nagar, S. ., Kirti, Kaur, . S. J. ., & Gupta, V. K. . (2012). ISOLATION, PURIFICATION AND CHARACTERIZATION OF ALKALI AND THERMO STABLE XYLANASE FROM BACILLUS SP. KS09. International Journal of Research and Development in Pharmacy & Life Sciences, 1(2), 63-68. Retrieved from https://ijrdpl.com/index.php/ijrdpl/article/view/166

Abstract

Nine bacterial strains were isolated using xylan rich media. The bacterial strain KS09 was selected on the basis of qualitative and quantitative test. It was identified as Bacillus sp. via physiological, morphological and biochemical characterization. The xylanase was purified to homogeneity from crude extract of Bacillus sp. KS09 using ammonium sulphate fractioning and CM-Sephadex C-50. The final purification fold was 10.20 with a recovery of 36.18%. The enzyme was optimally active at 50°C, pH 7.0 and stable over a broad pH range of 6.0-11.0. The residual activity at 6.0-11.0 pH was 100% even upto 3 h of incubation. The enzyme showed 75, 70 and 60% thermal stability at 50, 55 and 60°C, respectively after 1 h of incubation. The kinetic parameters (Km 22.59 mM; Vmax 76.93 IU/mL) were estimated using Lineweaver-Burk plot for purified xylanase. The xylanase activity was inhibited by all the metal ions applied. The characteristic studies revealed that xylanase including its cellulase free nature, broad pH stability and temperature stability are particularly suited its industrial applications.

View PDF

References

Poorna CA, Prema P (2007) Bioresour. Technol. 98:485-490.

Biely P. (1985) Trends Biotechnol. 3(11):286-290.

Kuhad RC, Singh A, Eriksson KEL. (1997) Adv. Biochem. Eng. Biotechnol. 57:47-125.

Anuradha P, Vijayalakshmi K, Prasanna ND, Sridevi K. (2007) Curr. Sci. 90:1283-1286.

Ninawe S, Lal R, Kuhad RC. (2006) Curr. Microbiol. 53:178–182.

Kulkarni N, Shendye A, Rao M. (1999) FEMS Microbiol. Rev. 23:411–456.

Li XT, Jiang ZQ, Li LT, Yang QS, Feng WY, Fan JY, Kusakabe I. (2005) Bioresour. Technol. 96:1370-1379.

Teather RM, Wood PJ. (1982) Appl. Environ. Microbiol. 43:777–780.

Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC. (2010) J. Ind. Microbiol. Biotechnol. 37(1):71-83.

Kiddinamoorthy J, Anceno AJ, Haki GD, Rakshit SK. (2008) World J. Microbiol. Biotechnol. 24:605-612.

Breccia JD, Sineniz F, Baigori MD, Castro GR, Hatti KR. (1998) Enzyme Microb. Technol. 22:42-49.

Yasinok AE, Sahin FL, Haberal M (2008) J. Appl. Sci. 14(4):374-380.

Gupta VK, Gaur R, Gautam N, Kumar P, Yadav IJ, Darmwal NS. (2009) Am. J. Food Technol. 4(1):20-29.

Dhillon A, Gupta JK, Khanna S. (2000) Process Biochem. 35:849-856.

Qureshy AF, Khan LA, Khanna S. (2002) Ind. J. Microbiol. 42:35-41.

Blanco A, Vidal T, Colom J, Pastor FIJ. (1995) Appl. Environ. Microbiol. 61:4468-4470.

Archana A, Satyanarayana T. (1997) Enzyme Microb. Technol. 21:12–17.

Khasin A, Alchanati I, Shoham Y. (1993) Appl. Environ. Microbiol. 59:725–730.

Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K. (1993) Appl. Environ. Microbiol. 59(7):2311-2316.

Morales P, Madrarro A, Flors A, Sendra JM, Gonzalez JAP. (1995) Enzyme Microb. Technol. 17:424-429.

Ninawe S, Kapoor M, Kuhad RC. (2008) Bioresour. Technol. 99(5):1252-1258.

Khendeparker RDS, Bhosle NB. (2006) Enzyme Microb. Technol. 39(4):732-742.

Gupta S, Bhushan B, Hoondal GS. (2000) J. Appl. Microbiol. 88:325-334.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Copyright (c) 2020 Array

Downloads

Download data is not yet available.