Peer Review, UGC Care
AN OVER-VIEW OF MICROWAVE OVEN IN THE FIELD OF SYNTHETIC CHEMISTRY
View PDF

Keywords

Microwave, reaction, organic solvent, heating rate.

How to Cite

Pradhan, D. K. ., Dharamrajan, T. ., Mishra, M. R. ., & Mishra, A. . (2012). AN OVER-VIEW OF MICROWAVE OVEN IN THE FIELD OF SYNTHETIC CHEMISTRY. International Journal of Research and Development in Pharmacy & Life Sciences, 1(2), 44-50. Retrieved from https://ijrdpl.com/index.php/ijrdpl/article/view/162

Abstract

In the recent years Microwave–induced Organic Reaction Enhancement (MORE) chemistry has now found an important utility values for carrying out chemical reactions in organic synthesis of compounds. This technique as an alternative to conventional energy sources for introduction of energy into reactions has become a very well-known and practical method in various fields of chemistry. Microwave-assisted organic synthesis is known for the spectacular accelerations produced in many reactions as a consequence of the heating rate, a phenomenon that cannot be easily reproduced by classical heating methods. Its specific heating method attracts extensive interest because of rapid volumetric heating, suppressed side reactions, energy saving, direct heating, decreased environmental pollutions, and safe operations Another area of interest which has been under focus recently is to avoid the use of organic solvent, which leads to wastage and is detrimental to the environment.

View PDF

References

Caddick S. (1995) Tetrahedron. 51(38): 10403-10432.

Gedye R, Smith F,Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. (1986) Tetrahedron Letters.27: 279–282.

Lidstrom P, Tierney J, Wathey B, Westman J. (2001) Tetrahedron. 57: 9225-9283.

Sridar V. (1998) Current Science. 74: 446-450

Oliver Kappe C. (2004) Angew Chem Int Ed,43: 6250-6284.

Nüchter M, Ondruschka B, Bonrath W, Gum A. (2004) Green Chem. 6: 128-141.

Loupy, A., Microwave in Organic Synthesis,Wilet-VCH Verlag GmbH, Weinheim, 2002.

Larhed M, Moberg C, Hallberg A. (2002) Acc Chem Res. 35: 717-727.

Lew A, Krutzik PO, Hart M.E, Chamberlin AR. (2002) J Comb Chem. 4: 95-105.

Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN. (2007) Mass Spectrom Rev. 26: 657-671.

Deshayes S, Liagre M, Loupy A, Luche JL, Petit A. (1999) Tetrahedron. 55, 10851-10870.

Giguere RJ, Bray TL, Duncan SM, Majetich G. (1986) Tetrahedron Letters. 27: 4945- 4958.

Lew A, Krutzik PO, Hart ME, Chamberlin AR. (2002) J Comb Chem. 4: 95-105.

Larhed M, Moberg C, Hallberg A. (2002) Acc Chem Res.35: 717-727.

De la Hoz A, Diaz Ortis,A, Moreno A, Langa F. (2000) Eur J Org Chem.3659-3673.

Kappe CO. (2004) Angewandte Chemie-International Edition. 43: 6250-6284.

Nüchter M, Ondruschka B, Bonrath W. (2004) Green Chem. 6: 128-141.

Deshayes S, Liagre M, Loupy A, Luche JL, Petit A. (1999) Tetrahedron. 55: 10851- 10870.

Bogdal D, Loupy A. (2008) Org Process Res Dev. 12: 710-722.

Bose AK. (1991) J Org Chem. 56: 6968- 6970.

Mingos DMP, Baghurst DR. (1991) Chem Soc Rev.20:1-4.

Majetich G, Hicks R. (1995) Radiat. Phys Chem.45(4),567-79.

Xiao JC, Twamley B, Shreeve JM. (2004) Org Lett. 6 (21): 3845-3647.

Deshayes S, Liagre M, Loupy A, Luche JL, Petit A. (1999) Tetrahedron.55:10851-10870.

Kundu S, Peng L, Liang H. (2008) Inorg Chem, , 47: 6344-6352.

Kappe CO, Dallinger D. (2006) Nat. Rev.Drug Discovery. 5: 51-63.

Andre L, Serge R. (1999) Tetrahedron Lett. 40(34): 6221.

Mojtahedi MM, Sharifi A, Mohsenzadeh F, Saidi MR. (2000) Synth Commun.30(1): 69.

Dave CV, Joshipura HM. (2002) Indian J Chem. 41B: 650.

Varma R S, Naicker K P, Liesen PJ. (1998) Tetrahedron Letters. 46: 8437.

Baruch B, Boruah A, Prajapti D, Sandhu JS. (1998) Tetrahedron Letters. 39(46): 8437.

Gowravaran S, Reddy MM, Srinivas D, Yadav JS. (1999) Tetrahedron Letters. 40(1): 165.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Copyright (c) 2020 Array

Downloads

Download data is not yet available.