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ABSTRACT
In the present study, Quantitative Structure Activity Relationship (QSAR) studies were performed on a series of Carboquinones derivatives as an anti-

Leukemic agent. Stepwise multiple linear regression (MLR) analysis was applied to identify the structural requirement for anti-leukemic activity. The QSAR developed
as a result of MLR indicate that the activity is affected by the Parachor, Refractive Index, logP and Pogliani index. The presence of Indicator parameter for amide
group in the QSAR model shows the role of amide substitution on a parent structure in regulating anti – leukemic activity of the compounds. The results were further
evaluated for its statistical significance and predictive power by cross validation method.
The information generated from the present study may be useful in the design of more potent carboquinones as an anti – leukemic agent.
Keywords: Modeling, QSAR, Anti-Leukemic activity, Carboquinones.

INTRODUCTION

Natural and synthetic quinoid compounds are known to be

biologically active compounds with antibacterial1,2, antifungal
3,4, antiprotozoal 5,6, virus inhibitory7, and antitumor activities
8,9. The biological activity of quinoid compounds has been

investigated by using structure- activity relationship

approaches since 196910. The antileukemic activity of

carboquinones expressed as the minimum effective dose

(MED) and the optimum effective dose (OED) was previously

modeled using the electrotopological state and the molecular

connectivity indices with multiple linear regression (MLR)11.

The General structure of Carboquinone is represented in

Figure 1.
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Figure 1: Parent Structure of Carboquinones
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QSAR is a mathematical relationship between a biological

activity of a molecular system and its geometric structural

and chemical characteristics. QSAR attempts to find consistent

relationship between biological activity and molecular

properties, so that these “rules” can be used to evaluate the

activity of new compounds. The QSAR methodology focuses

on finding a model, which allows for correlating the activity

to structure within a family of compounds.

QSAR studies can reduce the costly failures of drug

candidates in clinical trials by filtering the combinatorial

libraries. Virtual filtering can eliminate compounds with

predicted toxic of poor pharmacokinetic properties12, 13

early in the pipeline. It also allows for narrowing the library

to drug-like or lead-like compounds14 and eliminating the

frequent-hitters, i.e., compounds that show unspecific activity

in several assays and rarely result in leads15. Including such

considerations at an early stage results in multidimensional

optimization, with high activity as an essential but not only

goal16.

In an effort to for search of new potent anti leukemic agent,

we have performed QSAR studies on Carboquinone

derivatives for quantify the necessary structural and

physicochemical requirement of this series of compounds as

potent anti – leukemic agent.

To determine the stability and goodness of fit of predictive

model, the statistical results were cross validated by a

reliable validation process. The definitive validity of a model

is examined with the external validation, to evaluate its

efficacy.

Experimental

Biological activity data set

In this study 36 carboquinones derivatives (Table 1) were

utilized to constructs QSAR model using biological activity

data from literature11. In this work anti – leukemic activity is

expressed as minimum effective dose (MED). The values are

reported in the form of log(1/mol/kg) and shown in Table 1.

The MED is defined as the lowest dose level of a

pharmaceutical product that provides a clinically significant

response in average efficacy. The inverse log value was

adapted as dependent variable in QSAR analysis.

Calculation of molecular descriptor:

Molecular descriptors define the molecular structure and

physicochemical properties of molecules by a single number.

The Topological descriptors tested in present study were

Wiener index, Balaban J Index, Randic Connectivity index,

Pogliani index etc.  these are calculated using two-

dimensional representation of the molecules with the

software Dragon. The physicochemical properties tested in

present work were, Molar reractivity, Molar Volume,

Parachor, Refractive index, surface tension, density and

polarizability along with log P these properties have been

calculated using software ACD Labs. Indicator parameters

were also tested to describe the significance of presence and

absence of some substituents. These parameters or

descriptors are adapted as independent variable in QSAR

analysis. The significant parameter screened by MLR is shown

in Table 2.

Multiple Linear Regressions:

MLR is a method used for modeling linear relationship

between a dependent variable Y (log1/C) and independent

variable X (2D descriptors). MLR is based on least squares:

the model is fit such that sum-of-squares of differences of

observed and a predicted value is minimized. MLR estimates

values of regression coefficients (r2) by applying least

squares curve fitting method. The model creates a

relationship in the form of a straight line (linear) that best

approximates all the individual data points. In regression

analysis, conditional mean of dependant variable (log1/C) Y

depends on (descriptors) X. MLR analysis extends this idea to

include more than one independent variable.

Regression equation takes the form

Y = b1 * x1 + b2 * x2 + b3 * x3 + c

where Y is dependent variable, ‘b’s are regression

coefficients for corresponding ‘x’s (independent variable), ‘c’

is a regression constant or intercept17,18.

All the calculated descriptors and indicator variables were

considered as independent variable and biological activity

as dependent variable. STATISTICA software was used to

generate QSAR models. Statistical measures used were n-

number of compounds in regression, r correlation coefficient,

r2-squared correlation coefficient, F- test (Fischer’s value),

SEE- standard error of estimation for statistical significance,

Validation parameters considered to evaluate the

significance of these statistical parameters were, cross

validated R2 or q2 (Adjusted R2), standard deviation based
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on predicted residual sum of squares (RSS) and Total sum of

square (TSS),.

Residual Sum of Squares (RSS)

It is the sum of the squared difference between the

experimental response y and the response calculated by the

regression model x:

n

RSS = Σ (Yi – Ŷi)2

i = 1

Lower the value of RSS shows better predictive ability of the

model and more nearness of the calculated and

experimental values.

Total Sum of Squares (TSS)

It is the total variance that a regression model can explain

and is used as a reference quantity to calculate

standardized quality parameters. Also denoted as SSY, it is

the sum of the squared differences between the

experimental responses and the average experimental

response:

n

TSS = SSY = Σ (Yi – Ȳi)2

i = 1

Adjusted R2

Sometime the r value of a model shows regression by chance,

therefore in order to validate that whether the correlation

actual or by chance R2 adjusted has been shown.

RESULTS AND DISCUSSION

A data set of 36 carboquinones compounds (Table 1 and 2)

for anti-leukemic activity in terms of MED is used for the

present QSAR study. The QSAR studies of the carboquinones

series resulted in several QSAR equations. The descriptors

involved in the selected models are given in Table 2. The

best pentavariate model obtained as:

MED (log1/C) = -10.71 – 0.021 (±0.0052) Pc + 11.03

(±2.7)RI – 0.282 (±0.0642) Dz – 1.11 (±0.156)logP +

0.941 (±0.170) Iam ............................... Eq (1)

N = 36, r = 0.919, r2 = 0.8445, SEE = 0.2738, F- Ratio =

32.589, R2adj = 0.8186, RSS = 2.25,  TSS = 14.47

Eq (1) is the best pentavariate model obtained in MLR

analysis.

In order to improve result further, compound no 11 and 35 is

removed from the regression analysis and the statistical

fitness of Eq (1) has been improved and shown below in the

form of Eq (2).

MED (log1/C) = -6.05 + 0.0147 (±0.0049) Pc + 8.2

(±2.52)RI – 0.208 (±0.060) Dz – 0.99 (±0.133)logP +

0.777 (±0.158) Iam ..........................................Eq (2)

N = 34, r= 0.9456, r2 = 0.8941, SEE = 0.225, F-Ratio =

47.3, R2adj = 0.8752,   RSS = 1.42, TSS = 13.38

Further 3 compounds (19, 20 & 36) appear as an outlier in

the MLR analysis performed with set of 34 compounds.

Therefore compound 19, 20 and 36 was also removed from

the data set and MLR has been performed with a set of 31

carboquinones. This results in the further improvement of

statistical fitness and the Eq (2) has been improved and

presented as Eq (3).

MED (log1/C) = -5.25 + 0.0138 (±0.0036) Pc + 7.8

(±1.9)RI – 0.202 (±0.044) Dz – 0.92 (±0.104)logP + 0.934

(±0.120) Iam ....................................................Eq (3)

N = 31, r= 0.9709, r2 = 0.9426, SEE = 0.166, F – Ratio =

82.09, R2adj = 0.9311, RSS = 0.6865,  TSS = 11.96

In the QSAR model Eq (3) parachor shows positive

correlation coefficient, which is responsible for direct

relationship between parachor and log1/C i.e., higher the

value of Pc higher will be the log1/C and results in lower

MED and vice versa. Therefore a substitution which increases

the parachor and hence reduce MED is favorable for the

anti-leukemic activity of the carboquinones.

Refractive index is showing positive coefficient, means

increase in RI increases log1/C and therefore reduces MED,

therefore substitution which increases the RI of overall

compound is desirable. RI is a measure of bulkiness therefore

more bulk in a compound is required.

Similarly pogliani index, represent ratio of valance electron

to the principal quantum number. In the Eq (3) negative

coefficient of Dz shows that increase in Dz reduces the

log1/C and hence increases MED value. Therefore higher Dz

is not favorable, which shows that the group with less number
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Table 1 : Substituents of Carboquinones, Experimental log1/C, Calculated log1/C using Eq (3) and Residual value of

log1/C (Exp log1/C- Calc log1/C)

S. No R1 R2 Exp log1/C Calc.log1/C Residue

1. C6H5 C6H5 4.33 4.31 0.02
2. CH3 (CH2)3C6H5 4.47 4.46 0.01
3. C5H11 C5H11 4.63 4.49 0.14
4. CH(CH3)2 CH(CH3)2 4.77 5.03 -0.26
5. CH3 CH2C6H5 4.85 4.94 -0.09
6. C3H7 C3H7 4.92 5.00 -0.08
7. CH3 CH2OC6H5 5.15 5.13 0.02
8. CH2CH2OCON(CH3)2 CH2CH2OCON(CH3)2 5.16 5.21 -0.05
9. C2H5 C2H5 5.46 5.37 0.09
10. CH3 CH2CH2OCH3 5.57 5.75 -0.18
11. OCH3 OCH3 5.59 ------ -----
12. CH3 CH(CH3)2 5.60 5.43 0.17
13. C3H7 CH(OCH3)CH2OCONH2 5.63 5.90 -0.27
14. CH3 CH3 5.66 5.93 -0.27
15. H CH(CH3)2 5.68 5.76 -0.08
16. CH3 CH(OCH3)C2H5 5.68 5.58 0.10
17. C3H7 CH2CH2OCONH2 5.68 5.91 -0.23
18. CH2CH2OCH3 CH2CH2OCH3 5.69 5.72 -0.03
19. C2H5 CH(OC2H5)CH2OCONH2 5.76 -------- ---
20. CH3 CH2CH2OCOCH3 5.78 -------- ---
21. CH3 C2H5 5.86 5.63 0.23
22. CH3 CH(OCH2CH2OCH3)CH2OCONH2 6.03 5.82 0.21
23. CH3 CH2CH(CH3)OCONH2 6.14 6.09 0.05
24. C2H5 CH(OCH3)CH2OCONH2 6.16 6.25 -0.09
25. CH3 CH(C2H5)CH2OCONH2 6.18 6.00 0.18
26. CH3 CH(OC2H5)CH2OCONH2 6.18 6.28 -0.10
27. CH3 (CH2)3OCONH2 6.18 6.13 0.05
28. CH3 (CH2)2OCONH2 6.21 6.34 -0.13
29. C2H5 (CH2)2OCONH2 6.25 6.09 0.16
30. CH3 CH2CH2OH 6.39 6.29 0.10
31. CH3 CH(CH3)CH2OCONH2 6.41 6.15 0.26
32. CH3 CH(OCH3)CH2OCONH2 6.41 6.46 -0.05
33. H N(CH3)2 6.45 6.37 0.08
34. CH2CH2OH CH2CH2OH 6.54 6.53 0.01
35. CH3 N(CH3)2 6.77 -------- ----
36. CH3 CH(OCH3)CH2OH 6.90 -------- ----

Figure 2 : The diagramatic representation of structural requisits of Carboquinones
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Table 2: Structural and physicochemical Parameters present in QSAR models

S. No Pc RI Dz logP Iam

1. 712.9 1.739 55 2.987 0
2. 699.4 1.661 51 2.839 0
3. 766 1.575 51 3.079 0
4. 601.6 1.618 43 2.138 0
5. 619.2 1.707 47 2.379 0
6. 605.7 1.607 43 2.138 0
7. 639.6 1.68 50 1.591 0
8. 789.5 1.618 64 1.168 1
9. 525.5 1.632 39 1.632 0
10. 545.9 1.63 42 0.845 0
11. 486.1 1.619 41 -0.463 0
12. 523.5 1.644 39 1.632 0
13. 744.2 1.626 58.5 1.013 1
14. 445.4 1.68 35 1.097 0
15. 487.1 1.668 37 1.369 0
16. 583.9 1.623 44 1.101 0
17. 660.9 1.634 51.5 1.361 1
18. 646.4 1.598 49 0.578 0
19. 679.2 1.635 54.5 0.612 1
20. 580.8 1.668 47.5 0.855 1
21. 485.5 1.653 37 1.369 0
22. 784.9 1.621 64.5 0.356 1
23. 618.8 1.65 49.5 1.111 1
24. 679.2 1.635 54.5 0.612 1
25. 658.9 1.644 51.5 1.316 1
26. 679.2 1.639 54.5 0.612 1
27. 620.9 1.652 49.5 1.111 1
28. 580.8 1.668 47.5 0.855 1
29. 620.9 1.647 49.5 1.111 1
30. 502.5 1.686 40 0.518 0
31. 618.8 1.658 49.5 1.111 1
32. 639.2 1.652 52.5 0.363 1
33. 475.4 1.654 37.5 0.309 0
34. 559.6 1.692 45 0.073 0
35. 511.8 1.635 39.5 0.581 0
36. 560.8 1.666 45 0.073 0

Where, Pc = Parachor, RI = Refractive index, Dz = Pogliani index, logP = Octanol water partition coefficient,
Iam = Indicator parameter for amide functional group.

Figure 3: Graph obtained between Experimental log1/C and Calculated log1/C
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of valance electron and with higher principal quantum

number is beneficial for the biological activity.

logP is also showing inverse relationship, ie.., higher logP

reduces log1/C and in turn increases MED. Therefore lower

hydrophobicity in the compound is needed. All the structural

requisites are also represented in the form of Figure 2.

Positive correlation coefficient of indicator parameter Iam,

shows that presence of amide group at the chain terminal of

R2, increase the value of log1/C, which reduces the MED of

the compounds hence presence of amide group at the chain

terminal of R2 is desirable.

The statistical results shows continues improvement in the

statistical parameter, Cross validation parameters were also

showing continues improvement, and hence justifying the

removal of outliers from the MLR analysis. The regular

improvement in R2adj from 0.8186 to 0.9311 justifying the

outlier of compounds in each step and assure that the

regression is not by chance.

Similarly regular lowering of RSS from 2.25 to 0.6865 and

lowering of TSS from 14.47 to 11.96 proves the fitness of

model at par.

The experimental MED and calculated MED from Eq (3) has

been shown in Table 1 along with their residual values.

The graph between observed and calculated MED is also

represented in Figure 3.

CONCLUSION:

In the present study, on the basis of QSAR obtained , it has

been concluded that the substituents which increases

parachor and refractive index of the overall substituted

carboquinones, shows improved anti-leukemic activity. On the

other hand substituents which reduces hydrophobicity and

pogliani index of overall compound, shows improved

antileukemic activity. Presence of –CONH2 group at the

chain terminal of R2 is also favorable factor in terms of anti

leukemic activity.
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