A Review about various Nanomaterials in Drug Delivery Systems and their Applications

Authors

  • Brahamdutt Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
  • Arun Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
  • Pradeep Sangwan Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
  • Pritam Singh Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
  • Vikas Yadav Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
  • Sandeep Kumar Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India

DOI:

https://doi.org/10.21276/IJRDPL.2278-0238.2018.7(3).2969-2981

Keywords:

Nanomaterials, nano-suspension, Solid lipid nanoparticles, Liposomes, Hydrogels, Dendrimers, Trans-corneal iontophoresis, Microneedles

Abstract

Most of drug entities face the problems like reduced absorption, faster metabolism and elimination, toxicity because of drug distribution to other tissues, low drug solubility, unpredictable bioavailability, etc. These issues need to be work out so as to make the novel drug delivery systems for successful therapy. Use of nanotechnology is one of the promising strategies to overcome all of these problems. Distinctive properties of nanomaterials like smaller particles size, high surface area, and ease of suspending in liquids, deeper access across the cells and organelles, flexible optical and magnetic properties are offered by nanoparticles as compared to other micro or macro-sized particles. Nanomaterials can be classified into different categories based on their drug delivery system, dimensions, structure, and consistency. Various types of nano-formulations (such as nanoparticles, nano-suspension, liposomes, hydrogels, solid lipid nanoparticles, dendrimers, microneedles, ocular insert/disk, trans-corneal iontophoresis) have been used by the researchers for modulating the physicochemical properties and biological activities of the drugs. This review highlights the various types of nanomaterials with their advantages and applications in the pharmaceuticals for enhanced physicochemical properties and better biological activities with reduced toxicity and higher biocompatibility.

Downloads

Download data is not yet available.

References

Thassu D, Deeleers M, Pathak Y. Handbook of Nanoparticulate Drug Delivery System. Vol. 166, New York: Informa Healthcare USA, Inc;2007.

Salta OV, Applications of Nanoparticles in Biology and Medicine. J Nanobiotechnol 2004:2-3.

Counreur P, Dubernet C, Puisieux F. Controlled Drug Delivery with Nanoparticles: Current Possibilities and Future Trends. Eur J Pharm Biopharm 1995;41: 2-3.

Rao JP, Geekeler KE. Polymer Nanoparticles Preparation Technique and Size Control Parameters. Prog Polym Sci 2011; 36:887-913.

Nagavarma BVN, Yadav HS, Ayaz A, Vasudha LS, Kumar SG. Different Techniques for Preparation of Polymeric Nanoparticles. Asian J Pharm Clin Res 2012;5(3):16-20.

Dubey SP, Thakur VK, Krishnaswami S, Hrushikesh AA., Veronica M, Brighton JL. Progress in Environment Friendly Polymer Nanocomposite Material From PLA: Synthesis, Processing and Applications. Vacuum 2017. doi: http://dx.doi.org/10.1016/j.vacuum.2017.07/009.

Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver Nanoparticles: Synthesis, Properties and Therapeutic Applications. Drug Discovery Today 2015;20(5): 595-596.

Sharma UK, Verma A, Kumar S, Pandey H, Pandey A. In-vitro, In-vivo and Pharmacokinetic Assessment of Amikacin Sulphate Laden Polymeric Nanoparticles Meant for Controlled Ocular Drug Delivery. Springer 2015;5:143-152.

Brahamdutt, Choudhary M, Kumar S, Bhatia M, Budhwar V. Formulation and In-vitro Evaluation of Sustained Release Tropicamide Loaded Chitosan Nanoparticles for Ocular Drug Delivery. Int Res J Pharm 2016;7(10): 27-35.

Gupta DK, Razdan BK, Bajpai M. Formulation and Evaluation of Nanoparticles Containing Artemisinin HCl. Int J Res Dev Pharm Life Sci 2014;2(3):925-934.

Kaur H, Ahuja M, Kumar S, Dilbaghi N. Carboxymethyl Tamarind Kernel Polysaccharide Nanoparticles for Ophthalmic Drug Delivery. Int J Biol Macromol 2011; 1:833-837.

Illig KJ, Wolf GL, Baconer ER et al. A Nanosurfactant wetting Agent for Preparation of Very Small Suspension of an Iodinated Contrast Agent, Pharm Tech 1999:92-104.

Lipinski CA, Lombardo F, Doming BW, Feeney PJ. Experimental and Computational Approach to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Delivery Rev 1997; 23:3.

Kipp JE, Wong JCT, Doty M, Rebbeck CL. Micro-precipitation Method for Preparing Submicron Suspensions. US Patent No- 6,607,784B2, 2003.

Kanke M, Simmons GH, Weiss DI. Clearance of 41Ce Labelled Microspheres From Blood and Distribution in Specific Organs Following Intravenous and Intra-arterial Administration in Beagle Dogs. J Pharm Sci 1973;6:508.

Barber TA Patients Issues Related to Particulate Matter. In: Barber T.A., Ed. Pharmaceutical Particulate Matter Analysis and Control. Buffalo Grove, IL. International Pharm Press, 1993 (Chapter XII).

Boedeker BH, Lojeski EW, Kline MD, Haynes DH. Ultra-Long Duration Local Anaesthesia Produced by Injection of Lecithin Coated Tetracaine Micro Crystals. J Clin Pharmacol 1994;34:699. doi:10.1002/j.1552-4604.1994.tb02026.x.

Karan SM, Lojeski EW, Haynes DH, Bina S, Wesche DL, Boedeker BH, et al. Intravenous Lecithin Coated Microcrystals of Dantrolene are Effective in Treatment of Malignant Hyperthermia: An Investigation in Rats, Dogs and Swines. Anesth Analg 1996;82:796.

Ward G, Yalkawsky S, Studies in Phlebitis. J Parenter Sci Technol 1993;47:161.

Donnelly JP, Mounton JW, Blijlevens NMA, et al. Enhanced Efficacy of NANOEDGE Intraconazole Pharmacokinetics of A 14 Days Course of Intraconazole Nanocrystals Given Intravenously to Allogenic Haematopoietic Stem Cell Transplant (HCST) Recipients. Abstract# A-32, In: 41st Interscience Conference On Antimicrobial Agents And Chemotherapy, Chicago, IL, December,2001:16-19.

Moghis UA, Shoukath MA, Ahmad A, Sheikh S, Ahmad I. Guggullipid Derivatives: Synthesis, Applications. Chem Phys Lipids 2010;163:362-366.

Yuan L, Geng L, Lan G, Peng Y, Duan X, Chen X, Chang Y. Effect of Iron Liposomes on Anemia of Inflammation. Int J Pharm 2013;454:82-89.

Jiang J, Yang SJ, Wang JC, Yang LJ, Xu ZZ, Yang T, et al. Sequential Treatment of Drug Resistant Tumors with RGD Modified Liposomes Containing Sirna or Doxorubicin. Eur J Pharm Biopharm 2010;76:170-178.

Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual Ligand Modification of Pegylated Liposomes Show Better Cell Selectivity and Efficient Gene Delivery. J Controlled Release 2011;153:141-148.

Li L, Soya H, Luo K, He B, Nie Y, Yang Y, et al. Gene Transfer Efficacies of Serum Resistant Amino Acid Based Cationic Lipids: Dependence on Head Group, Lipoplex Stability and Cellular Uptake. Int J Pharm 2011;408:183-190.

Markov OO, Mironova NL, Maslov MA, Petukhov IA, Morozova NG, Vlassov VV, et al. Noval Cationic Liposomes Provide Highly Efficient Delivery of DNA and RNA into Dendritic Cell Progenitors and their Immediate Offsets, J Controlled Release 2012;160:200-210.

Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in Pharmaceutical Formulation. Eur J Pharm Biopharm 2000;50:27-46.

Petelin M, Sentjurc M, Stolic Z, Skaleric U. EPR Study of Mucoadhesive Ointments for Delivery of Liposomes into Oral Mucosa. Int J Pharm 1998;173:193-202.

Kitano M, Mitani Y, Jakayama K, Nagae T. Buccal Absorption of Golden Hamster Cheek in-vitro and in-vivo of 17β- Estradiol from Hydrogels Containing Three Types of Absorption Enhancers. Int J Pharm 1998;174:19-28.

Patel VR, Amiji MM. Preparation and Characterization of Freeze Dried Chitosan- Poly-(Ethylene Oxide) Hydrogel for Site Specific Antibiotic Delivery in the Stomach. J Pharm Res 1996;13:588-599.

Lowman AM, Morishiti M, Kajita M, Nagae J, Peppas NA. Oral Delivery of Insulin Using pH-Responsive Complexation Gels. J Pharm Sci 1999;88:933-937.

Miyazaki S, Suisha F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood S. Thermally Reversible Xyloglucan Gel as Vehicle for Rectal Drug Delivery, J Controlled Release 1998;56:75-83.

Cohen S, Lobel E, Trevgoda A, Peled T. A novel in-situ forming Ophthalmic Drug Delivery System from Alginate Undergoing Gelation in the Eye. J Controlled Release 1997;44:201-208.

Mullar RH, Mehnert W, Souto EB. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Derma Delivery. In: Bronaugh L, Ed. Percutaneous Absorption, New York: Marcel Dekker,2005:719-738.

Mullar RH, Radtken, Wissing SA. Solid Lipid Nanoparticles (SLN's) and Nanostructured Liquid Carriers (NLC's) in Cosmetic and Dermatological Preparations. Adv Drug Delivery Rev 2002;54:5131-5155.

Mullar RH, Madar K, Gohlas S. Solid Lipid Nanoparticles (SLN's) for Controlled Drug Delivery- A review of the State of Art. Eur J Pharm Biopharm 2000;50:161-177.

Mullar RH, Radtaken, Wissing SA. Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs. J Pharm Sci 2002;242:121-128.

Mullar RH, Wissing SA. Lipopearls for Topical Delivery of Active Compounds and Controlled Release. In: Rathbone M.J., Hadgraft J., Robert M.S., Ed. Modified Release Drug Delivery Systems, New York: Marcel Dekker, 2003:571-587.

Bunjes H, Westen K, Koch MHJ. Crystallization Tendency and Polymorphic Transitions in Tryglyceride Nanoparticles. Int J Pharm 1996;129:19-173.

Ayan AK, Yenilmez A, Eroglu H. Evaluation of Radio labelled Curcumin Loaded Solid Lipid Nanoparticles Usage as an Imaging Agent in Liver Spleen Scintigraphy, Mater Sci Eng C 2017;75:663-670.

Xue J, Waang T, Hu Q, Zhoa M, Luo Y. A Novel and Organic Solvent Free Preparation of Solid Lipid Nanoparticles Using Natural Biopolymer as Natural Emulsifier and Stabilizer, Int J Pharm 2017. doi: http://dx.doi.org/10.1016/:2j.ijpharm.2017.08.066.

Pooja D, Kulhari H, Kuncha M, Rachmalla SS, Adams DJ, Bansal V, et al. Improving Efficacy, Oral Bioavailability and Delivery of Paclitaxel Using Protein Grafted Solid Lipid Nanoparticles. Mol Pharm 2016;13: 3903-3912.

Baek JS, So JW, Shin SC, Choc W. Solid Lipid Nanoparticles of Paclitaxel Strengthened by Hydroxyl Propyl- β- Cyclodextrin as an Oral Delivery System. Int J Mol Med 2012;30:953-959.

Tsai MS, Huang YB, Wu Pc, Fu YS, Kao YR, Fang JY, et al. Oral Apomorphine Delivery from Solid Lipid Nanoparticles with Different Nanostearate Emulsifiers, Pharmacokinetic and Behavioural Evaluation. J Pharm Sci 2011;100:547-557.

Xue M, Yang MX, Zhang W, Li XM, Gao DH, Qu ZM, et al. Characterization, Pharmacokinetics and Hypoglycaemic Effect of Berberine loaded Solid Lipid Nanoparticles. Int J Nanomed 2013;8:4672-4687.

Chen C, Dan T, Jin Y, Zhou Z, Yang Y, Zhu X, et al. Orally Delivered Salmon- Calcitonin Loaded Solid Lipid Nanoparticles Prepared by Micelle- Double Emulsion Method via the Combined Use of Different Solid Lipids. Nanomedicines 2013;8:1085-1100.

Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in Ocular Drug Delivery. Drug Discovery Today 2008;13(4):148.

Sevenson S, Tomalia DA. Dendrimers in Biomedical Applications- Reflections on the Field. Adv Drug Delivery Rev 2005;57:2106-2129.

Caminade AM, Laurent R, Majoral JP. Characterization of Dendrimers. Adv Drug Delivery Rev 2005;57:2130-2146.

Mintzer MA, Grinstaff MW. Biomedical Applications of Dendrimers. A Tutorial. Chem Soc Rev 2011;40(1):173-190.

Girzkiewicz M, Maculewicz BK. Dendrimers as Nanocarriers for Nucleoside Analogues. Eur J Pharm Biopharm 2017;114:43-56.

Sun W, Mignaris S, Shen M, Shi X. Dendrimers Based Magnetic Iron Oxide Nanoparticles: Their Synthesis and Biomedical Applications. Drug Discovery Today 2016;21(12):1873-1885.

Kumar DA, Raja Kumar P. Synthesis and Anticancer Activity of Bile Acid Dendrimers with Trazole as Bridging Unit Through Click Chemistry. Steroids 2017;125:37-46.

Gupta L, Sharma AK, Gothwal A , Khan MS, Khinchi MP, Qayum A, et al. Dendrimers encapsulated and Conjugated Delivery of Berberine: A Novel Approach Mutigating Toxicity and Improving In vivo Pharmacokinetics. Int J Pharm 2017;528:88-94.

Souza JG, Dias K, Silva SAM, Razende LCCD, Rocha EM, Emery FS, et al. Transcorneal Iontophoresis of Dendrimers: PAMAM Corneal Penetration and Dexamethasone Delivery. J Controlled Release 2015;200:11-124.

Sharma AK, Gothwal A, Kesharwani P, Hashem A, Ayer AK, Gupta U. Dendrimers Nanoarchitecture for Cancer Diagnosis and Anticancer Drug Delivery. Drug Discovery Today 2017;22(2):314-316.

Uddin MJ, Scoutaris N, Kleptetsanis P, Choudhary B, Prausnitz MR, Dourournis D. Inkjet Printing of Transdermal Microneedles for the Delivery of Anticancer Agents. Int J Pharm 2015(21). doi: http://dx.doi.org/10.1016/j.ijpharm.2015.01.038.

Kim KS, Ito K, Simon L. Modelling of Dissolving Microneedles for Transdermal Drug Delivery: Theoretical and Experimental Aspects. Eur J Pharm Biopharm 2015;60(10):137-143.

Sebastein HDVM, Allen MG, Prausnitz MR. Micro-fabricated Microneedles: A Novel Approach to Transdermal Drug Delivery. Bioorg Med Chem Let 2014;24(22):5212-5215.

Ghosh P, Brogden NK, Stinchcomb AL. Fluvastatin as a Micropore Lifetime Enhancer for Sustained Delivery Across Microneedles Treated Skin. J Pharm Sci 2014;103(2):652-660.

Lee K, Jung H. Drawing Lithography for Microneedles: A Review of Fundamentals and Biomedical Applications. Biomaterials 2012;33(30):7309-7320.

Kaushik S, Hord AH, Denson DD, Allister DVM, Smitra S, Allen MG, et al. Lack of Pain Associated with Microfabricated Microneedles. Anesth Analg 2001;92:502-504.

Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of Microneedle Design on Pain in Human Volunteers. Clin J Pain 2008;24:585-594.

Ma GJ, Shi LT, Wu CW. Biomedical Properties of Na Natural Microneedle: The Caterpiller Spine. J Med Dev 2011;5:034502.

Gupta J, Felner EJ, Prausnitz MR. Minimal Invasive Insulin Delivery in Subject with Type 1 Diabetes Using Hollow Microneedles. Diabetes Technol Thr 2009;17(6):329-337.

Chong RHE, Gonzalez-Gonzale E, Lara MF, Speaker TJ, Contag CH, Kaspar RL, et al. Gene Silencing Following Sirna Delivery to Skin via Coated Steel Microneedles: In-vitro and in-vivo Proof of Concept. J Controlled Release 2013;166(3):211-219.

Zhu DD, Chen BZ, He MC, Guo XD. Structural Optimization of Rapidly Separating Microneedles for Efficient Drug Delivery. Ind Eng Chem Res 2017;51:178-184.

Joen IK, Chang SE, Park GH, Roh MR. Comparison of Microneedles Fractional Radiofrequency Therapy with Intradermal Botulinum Toxin Injection for Peri-Orbital Rejuvenation. Dermatology 2013;227:367-372.

Gold M, Taylor M, Rothus K, Tanaka Y. Non-Insulated Smooth Motion, Microneedles RF Fractional Treatment for Wrinkle Reduction and Lifting of Lower Face: International Study. Lasers Surg Med 2016;48(8):727-733.

Machekposhti SA, Soltani M, Najafizadeh P, Ebrahimi SA, Chen P. Biocompatible Polymer Microneedle for Topical Dermal Delivery of Tranexamic Acid. J Controlled Release 2017;261:87-92.

Ripolin A, Quinn J, Larraneta E, Perez EMV, Barry J, Donnelly RF. Successful Application of Large Microneedle Patches by Human Volunteers. Int J Pharm 2017;521:92-101.

De-Souza JF, Maria KN, Patricio PSOD, Fernandes GM, Marina C, Da-Silva G, et al. Ocular Inserts Based on Chitosan and Brominidine Tartrate: Development, Characterization and Biocompatibility. J Drug Delivery Sci Technol 2016;32:21-30.

Vaishya RD, Khurana VK, Patel S, Mitra AK. Controlled Ocular Drug Delivery with Nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014;6(5):422-437.

Karthikeyan D, Bhowmick M, Pandey VP, Kumar JN, Sangottuvela S, Sonkar S, et al. The Concept of Ocular Inserts as Drug Delivery System: An Overview, Asian J Pharm 2008;2(4):192-200.

Saettone MF, Salmonen L. Ocular Inserts for Topical Delivery. Adv Drug Delivery Rev 1995;16:96.

Everaert A, Wounters Y, Melsbach E, Zakaria N, Ludwig A, Kiekens F, et al. Optimization of HPMC Ophthalmic Inserts with Sustained Release Properties as a Carrier for Thermolabile Therapeutics. Int J Pharm 2017;528:395-405.

Lee YC, Millard JW, Negvesky GJ, Butrus SI, Yalkowsky SH. Formulation and in-vivo Evaluation of Ocular Inserts Containing Phenylephrine and Tropicamide. Int J Pharm 1999;182:121-126.

Colo GD, Burgalassi S, Chitoni P, Fiaschi MP, Zambito Y, Saettone MF. Gel Forming Erodible Inserts for Ocular Controlled Delivery of Ofloxacin. Int J Pharm 2001;215:101-111.

Colo GD, Burgalassi S, Chitoni P, Fiaschi MP, Zambito Y, Saettone MF. Relevance of Polymer Molecular Weight to the in-vitro/in-vivo Performance of Ocular Inserts Based on Poly(Ethylene Oxide). Int J Pharm 2001;220:169-177.

Shivakumar HN, Desai BG, Subhash PG, Ashok P, Hulakoti B. Design of Ocular Inserts of Brominidine Tartrate by Response Surface Methodology. J Drug Delivery Sci Technol 2007;17(6):421-430.

Hill JM, O'callaghan RJ, Hobden JA. Ocular Iontophoresis. In Mitra, A.K.(Ed.), Ophthalmic Drug Delivery System, Dekker, New York,1993:331-354.

Hobden JA, Rootman DS, O'callaghan RJ, Hill JM. Iontophoresis Application of Tobramycin to Uninfected and Pseudomonas Aeruginosa Infected Rabbit Corneas. Antimicrob Agents Chemother 1988;32:978-998.

Hobden JA, O'callaghan RJ, Hill JM, Reidy JJ, Rootman DS, Thompson HW. Tobramycin Iontophoresis into Corneas Injected with Drug Resistant Pseudomonas aeruginosa. Curr Eye Res 1989;8:1163-1169.

Fishman PH, Jay WM, Rissing P, Hill JM, Shockley RK. Iontophoresis of Gentamycin into Aphakic Rabbit Eye. Invest Ophthalmol Visual Sci 1984;25:343-345.

Grossman RE, Chu DF, Lee DA. Regional Ocular Gentamicin Level After Transcorneal and Transscleral Iontophoresis. Invest Ophthalmol Visual Sci 1990;31:909-916.

Rootman DS, Hobden JA, Jantzen JA, Gonzealez JR, O'callaghan RJ, Hill JM. Iontophoresis of Tobramycin for Treatment of Experimental Pseudomonas keratitis in the Rabbit. Arch Ophthalmol 1988;106:262-265.

Hobden JA, Reidy JJ, O'callaghan RJ, Inseler MS, Hill JM. Quinolones in Collagen Shields to Treat Aminoglycoside Resistant Pseudomonas keratitis. Invest Ophthalmol Visual Sci 1990;31:2241-2243.

Binstock EE, Raiskup F, Pery JF, Domb AJ. Trans-corneal and Trans-scleral Phosphate using Drug Loaded Hydrogel. J Controlled Release 2005;106:386-390.

Burza M, Packman C, Baum J, Trans-scleral Iontophoresis as an Adjunctive Treatment for Experimental Endophthalmitis. Arch Ophthalmol 1987;105(10):1418-1420.

Berdugo M, Valamanesh F, Andrieu C, Klein C, Benezra D, Courtois Y, et al. Delivery of Antisense Oligonucleotide to the Cornea by Iontophoresis. Antisense Nucleic Acid Drug Dev 2003;13(2):107-114.

Kamath SS, Gangarose LP, Electrophoretic Evaluation of Mobility of Drugs Suitable for Iontophoresis. Methods Find Exp Clin Pharmacol 1995;17(4):227-232.

Published

2018-06-15

How to Cite

Brahamdutt, Arun, Sangwan, P. ., Singh, P. ., Yadav, V. ., & Kumar, S. . (2018). A Review about various Nanomaterials in Drug Delivery Systems and their Applications. International Journal of Research and Development in Pharmacy & Life Sciences, 7(3), 2969 - 2981. https://doi.org/10.21276/IJRDPL.2278-0238.2018.7(3).2969-2981