HUNTINGTON’S DISEASE: AN INDIAN UPDATE ON GENETICS AND WIDESPREAD

Authors

  • Babu Srija Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Thangaraj Sugunadevi Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Bharathi Geetha Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Vaishnavai Suresh Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Venkatesan Dhivya Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Vellingiri Balachandar Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore-641046, Tamilnadu, India
  • Aishwarya Tamilarasan Department of Biochemistry, Avinashilingam University For Women, Coimbatore-641043,Tamilnadu,India.

Keywords:

HD, Htt gene, CAG repeats, Epigenetics Prevalence.

Abstract

Huntington’s disease (HD) is a dominantly transmitted progressive neurodegenerative disorder due to an abnormal elongation of the polyglutamine (polyQ) chain in the Huntington (Htt) protein. Children of HD gene carriers have a 50% chance of inheriting the disease.The loss of medium GABAergic spiny neurons, and specific neuronal loss in layers V and VI of the cerebral cortex lead to the decline in motor, cognitive and psychiatric functions.In HD the number of CAG repeats play a major role in the gene, hence the disease is termed as “trinucleotide repeat” disorder. The present study focussed on prevalence and expanded CAG repeats on Huntington disease in Indian population. Repeats of 26 and smaller are normal,repeats between 27 and 35 are not associated with disease expression but may expand in paternal transmission,40 or larger are associated with disease expression, Intermediate repeats of 36–39 are associated with reduced penetrance. Age of onset (AOS) at disease diagnosis is associated with length of the expanded gene mutation, such that individuals with longer repeat lengths have a younger age at diagnosis. The identification of the genetic defect in HD permits direct genetic testing for the presence of the gene alteration responsible for the disease.

Downloads

Download data is not yet available.

References

Raymund AC Roos, (2010) Orphanet J Rare Dis.5: 40.

Vonsattel JP, Myers RH.(1985) J Neuropathol Exp Neurol. 44: 559-577.

Roos R, Hermans J. (1993) J Neurol Neurosurg Psychiatry. 56:98–100.

Foroud T, Gray J. (1999) J Neurol Neurosurg Psychiatry.66:52–56.

P. C. Kowalski, D. C. Belcher. (2015) Perspectives in Psychiatric Care 51, 157-161.

Topper R1, Schwarz M. (1998) J. Neurophysiological abnormalities in the Westphal variant of Huntington13:920-8.

Quarrell OWJ, Brewer HM. (2009) Oxford University Press.101-115.

Walker FO (2007). Lancet 369 (9557).218–28 [219].

Montoya A, Price BH. (2006). J Psychiatry Neurosci.31 (1): 21–9.

Aziz NA, van der Marck MA. (2008) J. Neurol. 255 (12): 1872–80.

Gagnon JF, Petit D. (2008) Curr. Pharm. Des. 14 (32): 3430–45.

van der Burg JM, Björkqvist M. (2009) Lancet Neurol. 8 (8): 765–74.

Martha Nance, M.D. Jane S.(2011) A Physician’s Guide to the Management of Huntington’s Disease.

Ross CA, Margolis RL. (1997)Medicine (Baltimore). 76:305–338.

Sharp AH, Loev SJ. (1995) Neuron.14:1065–1074.

HD Collaborative Research Group.A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983, 1993.

Reiner A, Albin RL. (1988)Proc Natl Acad Sci USA 85: 5733–5737.

Squitieri F, Gellera C. (2003)Brain.126: 946–955

Maglione V, Cannella M. (2006) Mech Ageing Dev 127: 213–216.

Zuccato C, Tartari M. (2003)NatGenet 35: 76–83.

Gauthier LR, Charrin BC. (2004) Cell.118: 127–138

Van Raamsdonk JM, Pearson J. (2004) BMC Neurosci.7: 80, 2006

Busch A, Engemann S. (2003)J Biol Chem.278: 41452–41461

Kim YJ, Yi Y. (2001) Proc Natl Acad Sci USA. 98: 12784–12789

Steffan JS, Agrawal. (2004) N. Science.304: 100–104

Harjes P, Wanker EE. (2003) Biochem Sci.28: 425–433

Andrade MA, Bork P. (1995)Nat Genet.11: 115–116

Tartari M, Gissi C. (2008)Mol BiolEvol.25: 330–338

Hermel E, Gafni J.(2004) Cell Death Differ 11: 424–438

Wellington CL, Ellerby. (1998) J Biol Chem 273: 9158–9167

Dyer RB, McMurray CT. (2013) European Journal of Human Genetics. 21, 1120–1127.

Lunkes A, Lindenberg KS. (2002)Mol Cell.10: 259–269

Ratovitski T, Nakamura M. (2007)CellCycle 6: 2970–2981

Bird, A. (2007) Nature. 447, 396–398.

Hatchwell, E. Greally. (2007) Trends Genet., 23, 588–595

Jones, P.A. (2012) Nat. Rev. Genet. 13, 484–492.

Lam, L.L., Emberly, E., Fraser, H.B., Neumann, S.M., Chen, E., Miller, G.E. and Kobor, M.S. (2012) Factors underlying variable DNA methylation in a human community.

Farré, P, Jones. (2015) Epigenetics Chromatin. 13072-015-0011

Villar-Menéndez, I., Blanch. (2013) Neuromolecular Med. 15, 295–309.

Subramaniam S, Sixt KM. (2009)Science324: 1327–1330

Reik W, Maher. J. Med. Genet. 30, 185–188

Kremer HP, Roos RA. (1991)Neurosci Lett.132: 101–104

Ashizawa T, Wong LJ. (1994) Neurology.44: 1137–1143

Rubinsztein, D.C., Leggo. (1996) J. Hum. Genet. 59, 16–22

Stine, O.C Pleasant, N. Hum. Mol. Genet. 2, 1547–1549

Duyao, M Ambrose. (1993) Nat. Genet. 4, 387–392

Wexler NS, (2004) Proc Natl Acad Sci U S A. 101(10):3498–3503

Andresen, J.M Gayán. (2007) Ann. Hum. Genet. 71, 295–301

Buckley. (2007) J. Neurosci. 27, 6972–6983.

Boutell, J.MThomas, (1999) Hum. Mol. Genet. 8, 1647– 1655

Steffan, J.S. Kazantsev. A. Proc. Natl Acad. Sci. USA. 97, 6763–6768

Shimohata, T Nakajima. (2000) Nat. Genet. 26, 29–36

Dunah, A.W.Jeong. (2002) Science. 296, 2238–2243

Ranen NG, Stine OC. (1995) Am J Hum Genet 57: 593–602.

Andrew SE, Goldberg YP.(1993) Nat Genet.4: 398–403

Rubinsztein DC, Barton DE. (1993) Hum Mol Genet.2: 1713–1715

Brinkman RR, Mezei MM. (1997) Am J Hum Genet.60:1202–1210

Squitieri F, Andrew SE. (1994) Hum Mol Genet. 3(12): 2103–2114.

Masuda N, Goto (1995) J. J Med Genet. 32: 701–705.

Warby SC, Visscher H. (2009) Am J Hum Genet. 85: 942–945.

Nance MA, Mathias-Hagen V. (1999) Neurology. 52:392– 4

Sathasivam K, Amaechi I. (1997) Hum Genet. 99:692–5

Kremer B, Almqvist E. (1995) Am J Hum Genet. 57:343–50

Chong SS, Almqvist E. (1997) Hum Mol Genet. 6:301-309.

Masuda N, Goto J. ( 1995) J MedGenet. 32: 701–705.

Srimanta Pramanik, Priyadarshi Basu. (2000) European Journal of Human Genetics. 8, 678–682.

MARTIN JB, (1982) Nature. 229:205-206.

Duyao M, Ambrose C. (1993) Nature Genet. 4:387-92.

KURTZKE JF, (1979) Adv Neurol. 23:13-25.

Castilhos RM, (2016) Rede Neurogenética.

Chang CM, Yu YL.(1994) Clin Exp Neurol. 31: 43–51.

Nakashima K, Watanabe Y. (1996) Neuroepidemiology.15: 126–131.

Falush D, Almqvist EW. Am J Hum Genet 2000; 63: 373–385.

Fisher ER1, Hayden MR. (2014) Am J Hum Genet. 41: 168–179

Law HY, NqIS. Yoon CS, (2001) 30(2):122-7

Huntington’ disease in Malaysia: a clinical and genetic study. (1997) Neurol J Southeast Asia 2 ; 57-63.

Srimanta Pramanik, Priyadarshi Basu. (2000) European Journal of Human Genetics. 8, 678–682.

Majumder PP, Roy B. (1999) Eur J Hum Genet. 7: 435–446.

Harper PS, WB Saunders: London, 1991. Nature Genetics 5, 174 - 179 (1993)

Masuda N, Goto J. 1995) J Med Genet. 32: 701–705.

Published

2016-01-15

How to Cite

Srija, B. ., Sugunadevi, T. ., Geetha, B. ., Suresh, V. ., Dhivya, V. ., Balachandar, V. ., & Tamilarasan, A. . (2016). HUNTINGTON’S DISEASE: AN INDIAN UPDATE ON GENETICS AND WIDESPREAD. International Journal of Research and Development in Pharmacy & Life Sciences, 6(1), 2474-2483. Retrieved from https://ijrdpl.com/index.php/ijrdpl/article/view/176

Most read articles by the same author(s)